

Zagadnienia termiczne instrumentu naukowego STIX misji kosmicznej Solar Orbiter

<u>Karol Seweryn</u> on behave of STIX team Centrum Badań Kosmicznych PAN

Outline

3

C

- Solar Orbiter mission
- STIX instrument and its science objectives
- STIX thermal design and thermal model description
- Thermal simulations
- Thermal tests
- Results and conclusions
- Future work

Solar Orbiter mission

В

- ESA's M-class mission
- 2018 launching year
- Elliptical orbit around the Sun: 0.28AU (perihelion) and 0.952AU (aphelion)
- 10 different instruments on board (remote sensing instruments and in situ instruments)

Solar Orbiter mission

В

- Science objectives inner heliosphere
 - How does it work?
 - How does it affect the activity of the star
- Orbit configuration allows to view both Sun's equator and its poles

STIX instrument and its science objectives

- One of the remote sensing instruments
- Image the solar X-rays from 4 to 150 keV
- Science objectives: to determine intensity, timing and location of accelerated electrons near the Sun

STIX instrument and its thermal design requirements

- The ratio of the incoming solar flux which reaches the parts of the instrument located in the spacecraft should be minimized, but at the same time the most of the X-rays from 4 to 150keV should reach the detectors.
- The heat exchange between the STIX instrument and the spacecraft and its deep space radiator should be minimized.
- The detectors should be kept at temperature below -20°C, because of their working temperature range from -50 to -20°C.

Imager, grids and aspect system LP model

Bk

S

DEM LP model

Radiative couplings

- All surfaces are radiatively active, except the inner sides of the Caliste-SO Units.
- transmissivity coefficient (T) defined for the imager tube and the grids in order to simulate the holes.
- The net radiation (view factors) are calculated using Monte Carlo simulations.

Results

Hot operational case – temperatures

Results

Hot operational case – temperatures

Results

Cold operational case – temperatures

Final results from simulations

1. The Solar heat flux reaching the instrument was minimized by Beryllium X-ray windows with high emissive coating.

Final results from simulations

2. The maximal temperature of Caliste-SO units is -18.8°C in hot operational case.

Final results from simulations

- 3. The heat flow through the cold element is 2.2W and exceeds the limit of 2W in the hot operational case.
- 4. The conductive heat flow from DEM to S/C is 3.8W in hot operational case, and 2.5W in cold operational case, and exceeds the limit of 2W.
- 5. The DEM dissipates 80% of heat conductively through the baseplate; 20% is radiated. The heat flow through CE was not considered here.

Thermal tests - objectives

 Cross check the DEM thermal design, especially heat flux through Cold Element, the performance of x-ray windows, functionallity of STIX instruments in worst case scenarios

The following were done to fulfill these objectives:

A1. Design manufacturing and integration of the DEM STM2.0 based on ICDR model

- A2. Tests execution in 20 cases
- A3. Model correlation
- A4 Flight model predictions
- A5 Report preparation

Heat dissipation

HEATER CODE	Power hot	Power cold	
	case	case	
	[W]	[W]	
H_IDPU_1	2.066	1.680	
H_PSU_1	1.77	0.48	
H_DB_1	1.15	0	
H_PCB_warm	1.596	0	

Test results

(all of them are in the report)

Test number	Heat dissip.	CE temp.	Heat flux through CE	URP temp.	Detector – cold PCB temp.	PSU temp.	IDPU temp.
H1.1	1.15W	-5C	2.6W	50C	-3C	48.5C	48C
H2.1	1.15W	-15C	2.8W	50C	-12.5C	48.5C	48C
H5.1	6.6W	-20C	3.17W	51.5C	-17C	63.5C	71C
H8.1	6.6W	-25C	3.2W	51.5C	-21.5C	63.5C	70.5C
C2	2.16W	-45C	0.4W	-18C	-43C	-11C	1.5C

The heat flux through the CE is significantly higher then expected (2.2W)

Finall results of the test

- Confirmation of the thermal design
- The consolidated results of simulation and test was the base to request increasing the Spacecraft radiator size dedicated for STIX. Currently the STIX can transmit 3.2W with guaranted -25C at interface

Conclusions

- During the x-ray window tests the problems with coating appeared. The beryllium coating is an open issue,
- There is a important manufacturing and assembly issue related to MLI. Depending on the procedure the impact of ~0.6W can be reached
- The materials with temperature dependent thermo optical properties would be interesting for future investigations

Thank you!